Put p=log20 and q=log25 in 2log(x+1)=2p−q
log(x+1)2=2log20−log25
log(x+1)2=log(20)2−log25
log(x+1)2=log400−log25
log(x+1)2=log(40025)
(x+1)2=16
x2+1+2x=16
x2+2x−15=0
x2+5x−3x−15=0
(x−3)(x+5)=0
x=3,x=−5
If m=log 20 and n=log 25, find the value of x, so that : 2 log (x−4)=2m−n.