Putting n = 0,1,2,3,.... in the given relation, we get
P1=√12(1+p0)=√12(1+cosθ)
= cos θ2 where p0 = cos θ
P2=√12(1+p1)=√12(1+cosθ2)
∴P3=cosθ23,......,Pn=cosθ2n
∴P1P2P3......∞=limn→∞P1P2....Pn
=limn→∞cosθ22.cosθ22...cosθ2n
Choose θ2n=A,∴2nA=θ
as n→∞,A→0
∴lima→0 cos A cos 2A Cos 22 A...n terms
lima→0sin2n(A)2nsinA=lima→0sinθ2nA=sinθθ
Also √1−P02=√1−cos2θ=sinθ
∴cos⎛⎜
⎜⎝√1−P20P1P2P3...∞⎞⎟
⎟⎠=cos[sinθ(sinθ)/θ]=cosθ=P0