wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If Pn+1=12(1+pn) then cos ⎜ ⎜1P20p1p2p3.......to⎟ ⎟=p0

Open in App
Solution

Putting n = 0,1,2,3,.... in the given relation, we get
P1=12(1+p0)=12(1+cosθ)
= cos θ2 where p0 = cos θ
P2=12(1+p1)=12(1+cosθ2)
P3=cosθ23,......,Pn=cosθ2n
P1P2P3......=limnP1P2....Pn
=limncosθ22.cosθ22...cosθ2n
Choose θ2n=A,2nA=θ
as n,A0
lima0 cos A cos 2A Cos 22 A...n terms
lima0sin2n(A)2nsinA=lima0sinθ2nA=sinθθ
Also 1P02=1cos2θ=sinθ
cos⎜ ⎜1P20P1P2P3...⎟ ⎟=cos[sinθ(sinθ)/θ]=cosθ=P0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Dot Product
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon