If P (n,4) = 12. P (n,2), find n.
We have,
P(n,4) = 12. P(n,2)
⇒n!(n−4)!=12×n!(n−2)!⇒1(n−4)!=12(n−2)!⇒1(n−4)!=12(n−2)(n−3)(n−4)!⇒(n−2)(n−3)(n−4)(n−4)!=12⇒(n−2)(n−3)=12⇒n2−3n−2n+6=12⇒n2−5n+6−12=0⇒n2−5n−6=0⇒n2−6n+1n−6=0⇒n(n−6)(n+1)=0⇒n−6=0[∵n≠−1]⇒n=6
Hence, n= 6