Given :
p(n):n2<2n is true for n∈N−{1}
So, P(n) is true for n=2,3,⋯
For n=2,P(2):4<4 (false)
For n=3,P(3):9<8 (false)
For n=4,P(4):16<16 (false)
For n=5,P(5):25<32 (true)
So, minimum value of n=5
p(n):n2<2n;n≥5 is true for n=k
For k=n+1
p(n+1):(n+1)2<2n+1;n≥5
p(n+1):n2+2n+1<2⋅2n;n≥5
and 2n+1<2n;n≥5
∴ True for k=n+1