A double ordinate is a line parallel to axis of parabola.
Hence, if A and B are ends of double ordinate then :
A(at2,2at) and B(at2,−2at)
Let C(h,k) be point of trisection. i.e. C divides AB in ratio 1:2.
By section formula we have:
(h,k)=(1×at2+2(at2)1+2,1(−2at)+2(2at)1+2)
(h,k)=(3at23,4at−2at3)
(h,k)=(at2,2at3)
Now,
h=at2
k=2at3
So, 2at=3k
∴ The value of (at2,2at) becomes (h,3k) which is lies on parabola.
y2=4ax
(3k)2=4ah
⇒ 9k2=4ah
Now, substituting h=x and k=y
⇒ 9y2=4ax