Given
p+q+r=0
∴p3+q3+r3=3pqr
⇒p3+q3+r2−3pqr=0 (i)
R.H.S=pqr∣∣
∣∣abccabbca∣∣
∣∣
Applying C1→C1+C2+C3
=pqr∣∣
∣∣a+b+cbca+b+caba+b+cca∣∣
∣∣
=pqr(a+b+c)∣∣
∣∣1bc1ab1ca∣∣
∣∣
Applying R2→R2−R1 and R3→R3−R1
=pqr(a+b+c)∣∣
∣∣1bc0a−bb−c0c−ba−c∣∣
∣∣
=pqr(a+b+c)∣∣∣a−bb−cc−ba−c∣∣∣
=pqr(a+b+c)(a2+b2+c2−ab−bc−ca)
=pqr(a3+b2+c2−2abc)
=pqr(a3+a3+c3−3abc)−abc(p3+q3+r3−3pqr) .......{from (i) }
=pqr(a3+b3+c3)−abc(p3+q3+r3)
=(pqra3−abcp3)−(abcq3−pqrb3)+(pqrc3−abcr3)
=(ap){(ra)(qa)−(pb)(pc)}−(qb){(pc)(qa)−(pb)(rb)}+(rc){(pc)(qc)−(ra)(rb)}
=∣∣
∣∣paqbrcqcrapbrbpcqa∣∣
∣∣=L.H.S.
Hence proved