If p + q + r = a + b + c = 0, then the determinant
Δ=∣∣
∣∣paqbrcqcrapbrbpcqa∣∣
∣∣ equals
0
We have Δ=pqr (a3+b3+c3)−abc(p3+q3+r3)
But a + b + c = 0
⇒(a+b)3=−c3⇒a3+b3+3ab(a+b)+c3=0⇒a3+b3+c3=−3ab(−c)=3abc
Similarly, p3+q3+r3=3pqr
Thus, Δ = pqr (3 abc) - abc (3pqr) = 0
Hence the correct option is (a)