Given sides of triangle are
P=(2,3,5) Q=(−1,3,2)
Direction ratio's of PQ
=x2−x1,y2−y1,z2−z1=−1−2,3−3,2−5=−3,0,−3PQ=√(x2−x1)2+(y2−y1)2+(z2−z1)2,=√(−3)2+(0)2+(−3)2,=√9+9=√18=3√2,
Now directions cosines are
−33√2,03√2,−33√2−1√2,0,−1√2
Direction ratio's of QR
=x3−x2,y3−y2,z3−z2=3−(−1),5−3,−2−2=3+1,2,−4=4,2,−4QR=√(4)2+(2)2+(−4)2=√16+4+16=√36=6
Now directions cosines are
46,26,−4623,13,−23
Direction ratio's of RP
=x3−x1,y3−y1,z3−z1=3−2,5−3,−2−5=1,2,−7RP=√(1)2+(2)2+(−7)2=√1+4+49=√54=3√6
Now direction cosines are
13√6,23√6,−77√6