Write given equations in matrix form and apply crammer's rule
x=Δ1Δ;y=Δ2Δ;z=Δ3Δ
where
Δ1=∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣11(p−b)1(p−c)11(q−b)1(q−c)11(r−b)1(r−c)∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣Δ2=∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣1p11(p−c)1q11(q−c)1r11(r−c)∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣
Δ3=∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣1p1(p−b)11q1(q−b)11r1(r−b)1∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣Δ=∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣1p1(p−b)1(p−c)1q1(q−b)1(q−c)1r1(r−b)1(r−c)∣∣ ∣ ∣ ∣ ∣ ∣ ∣∣
Simplyfing the determinants gives
x=pqrbc;y=(p−b)(q−b)(r−b)b(b−c);z=(p−c)(q−c)(r−c)c(c−b)
Expanding the above terms and simplyfing
x+y+z=(p+q+r)bc(b−c)+bc(c−b)(b+c)bc(b−c)
=(p+q+r)−(b+c)
Hence x+y+z=16−4=12
Ans: 12