wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If psinθ+qcosθ=a and pcosθqsinθ=b, then p+aq+b+qbpa is equal to

Open in App
Solution

We have,
psinθ+qcosθ=a ...(1)
pcosθqsinθ=b ...(2)

Squaring (1) and (2), and then adding, we get
(psinθ+qcosθ)2+(pcosθqsinθ)2=a2+b2

(p2sin2θ+q2cos2θ+2pqsinθcosθ)+(p2cos2θ+q2sin2θ2pqsinθcosθ)=a2+b2

p2(sin2θ+cos2θ)+q2(cos2θ+sin2θ)=a2+b2

p2(1)+q2(1)a2b2=0

(p2a2)+(q2b2)=0

(p+a)(pa)+(q+b)(qb)=0

Dividing (pa)(q+b) on both sides.

p+aq+b+qbpa=0

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Identities_Concept
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon