If p=sin2x+cos4x, then
34≤p≤1
316≤p≤1/4
14≤p≤1
1≤p≤2
Find the range of p
The range of sinx and cosx is -1,1.
Therefore, the range of sin2x and cos2x is 0,1.
Given, p=sin2x+cos4x =sin2x+(1-sin2x)2=sin4x+sin2x–2sin2x+1=sin4x–sin2x+1=sin2x-122+34⇒p≥3/4
or it can also be written like p=sin2x+cos4x=sin2x+cos2x(1-sin2x)=(sin2x+cos2x)–sin2xcos2x=1–sin2xcos2x⇒p≤1Therefore, 34≤p≤1
Hence 34≤p≤1 and therefore option (A) is correct.
The maximum value of f(x)=sin2x1+cos2xcos2x1+sin2xcos2xcos2xsin2xcos2xsin2x,x∈R is: