If p=tan27θ−tanθ;q=sinθcos3θ+sin3θcos9θ+sin9θcos27θ, then prove that pq=2
Open in App
Solution
Write p=[tan27θ−tan9θ+tan9θ−tan3θ+tan3θ−tanθ] Now tanA−tanB=sin(A−B)cosAcosB ∴p=sin18θcos27θcos9θ+sin6θcos9θcos3θ+sin2θcos3θcosθ=2sin9θcos27θ+2sin3θcos9θ+2sinθcos3θ or p=2(q) or pq=2