The correct option is
B π2According to the question,
a,b,c are the pth, qth and rth terms of G.P.
Let A be the first term and R be the common ratio.
Then,
Taking log on both sides, we have,
loga=logA+(p−1)logR......(1)
logb=logA+(q−1)logR......(2)
logc=logA+(r−1)logR......(3)
(1)−(2)⇒loga−logb=logR(p−q)
(2)−(3)⇒logb−logc=logR(q−r)
(3)−(1)⇒logc−loga=logR(r−p)
Let θ be the desired angle between the 2 vectors,
Then,
cosθ=(loga3^i+logb3^j+logc3^k)×[(q−r)^i+(r−p)^j+(p−q)^k]√[(loga3)2+(logb3)2+(logc3)2]×[(q−r)2+(r−p)2+(p−q)2]
Substituting the values of (p−q),(q−r),(r−p) from above, we have,
cosθ=loga(logb−logclogR)+logb(logc−logalogR)+logc(loga−logblogR)
⎷[(loga)2+(logb)2+(logc)2]{(logb−logclogR)2+(logc−logalogR)2+(loga−logblogR)2}
⇒cosθ=0√[(loga)2+(logb)2+(logc)2]{(logb−logc)2+(logc−loga)2+(loga−logb)2}
⇒cosθ=0
⇒θ=90°
Thus, the angle between the 2 given vectors is 90°