The correct option is A x2a2+y2b2=12
Given,P(θ),Q(π2+θ) are two points on the ellipse x2a2+y2b2=1
Any point on the ellipse will be (acosθ,bsinθ)
⇒P=(acosθ,bsinθ),Q=(acos(π2+θ),bsin(π2+θ))
⇒P=(acosθ,bsinθ),Q=(−asinθ,bcosθ)
Let required point be C(x,y)
Given, C=mid−pointofPQ
⇒(x,y)=((acosθ−asinθ)2,(bsinθ+bcosθ)2)
⇒xa=((cosθ−sinθ)2),yb=((sinθ+cosθ)2)
on squaring xa,yb and adding both
⇒x2a2+y2b2=((cosθ−sinθ)2)2+((sinθ+cosθ)2)2
⇒x2a2+y2b2=2(cos2θ+sin2θ)4
⇒x2a2+y2b2=12(since cos2θ+sin2θ=1)