The correct option is B 1
Given: px–1=qr,qy–1=rp,rz–1=pq,
px−1=qr
⇒px−1×p=pqr
⇒px=pqr
⇒p=(pqr)1x ....(i)
Similiarly, qy−1=rp
⇒q=(pqr)1y ....(ii)
Also, rz−1=pq ....(iii)
⇒r=(pqr)1z
Multiplying (i), (ii) and (iii):
p×q×r=(pqr)1x+1y+1z (∵am×an=am−n)
⇒(pqr)1=(pqr)1x+1y+1z
⇒1=1x+1y+1z
Hence, the correct answer is option (b).