If P=x3−1x3 and Q=x−1x,x∈(1,∞) then minimum value of PQ2 is:
Match the following (|x| < 1)
(1) (1+x)−1 (P) 1 + 2x + 3 x2 + 4 x3.........
(2) (1−x)−1 (Q) 1 - x + x2 - x3.........
(3) (1+x)−2 (R) 1 + x + x2 + x3.........
(4) (1−x)−2 (S)1 - 2x + 3 x2 - 4 x3.........
If (x+1x)=4, find the value of
(1) (x3+1x3)
(2) (x−1x)
(3) (x3−1x3)