p(x)=ax2+bx and q(x)=lx2+mx+n
It is given p(1)=q(1)
⇒(a+b)−(l+m+n)=0
⇒(a−l)+(b−m)−n=0.....(1)
It is given p(2)−q(2)=1
⇒(4a+2b)−(4l+2m+n)=1
⇒4(a−l)+2(b−m)−n=1.....(2)
It is given p(3)−q(3)=4
⇒(9a+3b)−(9l+3m+n)=4
⇒9(a−l)+3(b−m)−n=4.....(3)
Solving these equations, we get
a−l=45,b−m=−1,n=15
Now consider, p(4)−q(4)
=(16a+4b)−(16l+4m+n)
=16(a−l)+4(b−m)−n
⇒p(4)−q(4)=435
⇒m−8∗n=3