1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard X
Mathematics
Concept of Inequality
If P = x3 + y...
Question
If P = x
3
+ y
3
/(x - y )
2
+ 3xy, Q = x
3
- y
3
/ ( x + y )
2
- 3xy and R = x
2
- y
2
/ xy, express [ P x Q / R ] as a rational expression in the lowest form.
Open in App
Solution
Consider
the
following
expressions
.
P
=
x
3
+
y
3
x
-
y
2
+
3
xy
,
Q
=
x
3
-
y
3
x
+
y
2
-
3
xy
and
R
=
x
2
-
y
2
xy
It
is
required
to
express
P
×
Q
/
R
as
a
rational
expression
in
the
lowest
form
.
First
simplify
the
expression
P
and
Q
Use
the
formulas
,
a
+
b
2
=
a
2
+
2
ab
+
b
2
,
a
-
b
2
=
a
2
-
2
ab
+
b
2
a
3
+
b
3
=
a
+
b
a
2
-
ab
+
b
2
,
a
3
-
b
3
=
a
-
b
a
2
+
ab
+
b
2
Therefore
it
implies
that
P
=
x
3
+
y
3
x
-
y
2
+
3
xy
=
x
+
y
x
2
-
xy
+
y
2
x
2
-
2
xy
+
y
2
+
3
xy
=
x
+
y
x
2
-
xy
+
y
2
x
2
+
xy
+
y
2
and
Q
=
x
3
-
y
3
x
+
y
2
-
3
xy
=
x
-
y
x
2
+
xy
+
y
2
x
2
+
2
xy
+
y
2
-
3
xy
=
x
-
y
x
2
+
xy
+
y
2
x
2
-
xy
+
y
2
So
the
product
P
×
Q
is
P
×
Q
=
x
+
y
x
2
-
xy
+
y
2
x
2
+
xy
+
y
2
×
x
-
y
x
2
+
xy
+
y
2
x
2
-
xy
+
y
2
=
x
+
y
x
-
y
=
x
2
-
y
2
Therefore
the
value
of
P
×
Q
/
R
is
P
×
Q
/
R
=
x
2
-
y
2
x
2
-
y
2
/
xy
=
x
2
-
y
2
x
2
-
y
2
xy
=
xy
1
So
the
required
simplified
expression
is
P
×
Q
/
R
=
xy
1
Suggest Corrections
0
Similar questions
Q.
Simplify the expression :
[
x
3
+
y
3
(
x
−
y
)
2
+
3
x
y
]
÷
[
(
x
+
y
)
2
−
3
x
y
x
3
−
y
3
]
×
x
y
x
2
−
y
2
Q.
Simplify:
[
x
3
+
y
3
(
x
−
y
)
2
+
3
x
y
]
÷
[
(
x
+
y
)
2
−
3
x
y
x
3
−
y
3
]
×
x
y
x
2
−
y
2
Q.
Simplify:
[
x
3
+
y
3
(
x
−
y
)
2
+
3
x
y
]
+
[
(
x
+
y
)
2
−
3
x
y
x
3
−
y
3
]
×
x
y
x
2
−
y
2
.
Q.
If
x
+
y
=
1
then
x
3
+
y
3
+
3
x
y
=
.
.
.
.
.
.
.
.
.
.
.
.
Q.
If
x
3
+
y
3
+
1
=
3
x
y
, where
x
≠
y
determine the value of
x
+
y
+
1
.
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Concept of Inequality
MATHEMATICS
Watch in App
Explore more
Concept of Inequality
Standard X Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app