The correct option is C 3,−7
H.C.F. h(x)=x2−x−2=x2−2x+x+2
=x(x−2)+1(x−2)=(x−2)(x+1)
Now, the H.C.F. of p(x) and q(x) is (x−2)(x+1)
Hence, (x−2) and (x+1) are both factors of p(x) as well as q(x).
Now, p(x)=(x+1)(3x2+bx+2) and (x−2) is a factor of p(x).
∴p(2)=0
∴(2+1){3(2)2+b(2)+2}=0
∴(3)(12+2b+2)=0
∴2b+14=0
∴2b=−14 ∴b=−7
Now, q(x)=(x−2)(x2+ax+1) and (x+1) is a factor of q(x).
∴q(−1)=0
∴(−1,−2){2(−1)2+a(−1)+1}=0
∴(−3)(2−a+1)=0
∴3−a=0∴a=3
Thus a=3 and b=−7