If P(A)=12,P(B)=13, and P(A∩B)=712, then the value of PA'∩B' is
712
34
14
16
Explanation for the correct option.
Step 1: Find the value of PA∪B
Given, P(A)=12,P(B)=13and P(A∩B)=712.
Apply this formula:
PA'∩B'=PA∪B' and PA∪B=P(A)+P(B)-P(A∩B)
∴PA'∩B'=1-PA∪B
∴PA∪B=12+13-712=6+4-712=14
Step 2: Find the value of PA'∩B'
∴PA'∩B'=1-14=4-14=34
Hence, option B is correct.