The correct options are
A ϕ(300,200)=ϕ(400,200)
C ϕ(100,200)=ϕ(200,200)
ϕ(α,β)=∣∣
∣∣cosα−sinα1sinαcosα1cos(α+β)−sin(α+β)1∣∣
∣∣
Applying R3→R3−R1(cosβ)+R2(sinβ)
=∣∣
∣∣cosα−sinα1sinαcosα1001+sinβ−cosβ∣∣
∣∣
=(1+sinβ−cosβ)(cos2α+sin2α)
=1+sinβ−cosβ which is independent of α.