wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If π=180o and A=π6, prove that (1cosA)(1+cosA)(1sinA)(1+sinA)=13

Open in App
Solution

If π=1800 then A=π6=18006=300.
Let usfirstfind the value of left hand side (LHS) that is (1cosA)(1+cosA)(1sinA)(1+sinA) with A=300 as shown below:

(1cosA)(1+cosA)(1sinA)(1+sinA)=1cos2A1sin2A((a+b)(ab)=a2b2)=sin2Acos2A(sin2x+cos2x=1)=tan2A(sinAcosA=tanA)=(tan300)2(A=300)=(13)2(tan300=13)=13=RHS

Since LHS=RHS,

Hence, (1cosA)(1+cosA)(1sinA)(1+sinA)=13.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Ratios of Special Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon