1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Common Angles
If π = 180 ...
Question
If
π
=
180
o
and
A
=
π
6
, prove that
(
1
−
cos
A
)
(
1
+
cos
A
)
(
1
−
sin
A
)
(
1
+
sin
A
)
=
1
3
Open in App
Solution
If
π
=
180
0
then
A
=
π
6
=
180
0
6
=
30
0
.
Let us
first
find the value of left hand side (LHS) that is
(
1
−
cos
A
)
(
1
+
cos
A
)
(
1
−
sin
A
)
(
1
+
sin
A
)
with
A
=
30
0
as shown below:
(
1
−
cos
A
)
(
1
+
cos
A
)
(
1
−
sin
A
)
(
1
+
sin
A
)
=
1
−
cos
2
A
1
−
sin
2
A
(
∵
(
a
+
b
)
(
a
−
b
)
=
a
2
−
b
2
)
=
sin
2
A
cos
2
A
(
∵
sin
2
x
+
cos
2
x
=
1
)
=
tan
2
A
(
∵
sin
A
cos
A
=
tan
A
)
=
(
tan
30
0
)
2
(
∵
A
=
30
0
)
=
(
1
√
3
)
2
(
∵
tan
30
0
=
1
√
3
)
=
1
3
=
R
H
S
Since LHS=RHS,
Hence,
(
1
−
cos
A
)
(
1
+
cos
A
)
(
1
−
sin
A
)
(
1
+
sin
A
)
=
1
3
.
Suggest Corrections
0
Similar questions
Q.
Prove that:
cos
A
1
−
tan
A
+
sin
A
1
−
cot
A
=
sin
A
+
cos
A
Q.
If cotA=7/8, find (1/sin A) (1/sinA)÷(1+cosA) (1-cosA).
Q.
Prove that :
c
o
s
A
1
−
s
i
n
A
+
s
i
n
A
1
−
c
o
s
A
+
1
=
s
i
n
A
c
o
s
A
(
1
−
s
i
n
A
)
(
1
−
c
o
s
A
)
Q.
Prove the following:
1
+
sin
A
cos
A
=
1
+
sin
A
+
cos
A
1
+
cos
A
-
sin
A
Q.
Prove the following trigonometric identities.
(i)
1
+
sin
A
1
-
sin
A
=
sec
A
+
tan
A
(ii)