L.H.S. =√1+cosx+√1−cosx√1+cosx−√1−cosx=√2cos2x2+√2sin2x2√2cos2x2−√2sin2x2
=√2∣∣∣cosx2∣∣∣+√2∣∣∣sinx2∣∣∣√2∣∣∣cosx2∣∣∣−√2∣∣∣sinx2∣∣∣
=∣∣∣cosx2∣∣∣+∣∣∣sinx2∣∣∣∣∣∣cosx2∣∣∣−∣∣∣sinx2∣∣∣
=−cosx2+sinx2−cosx2+sinx2 [∵π<x<2π,∴π2<x2<π]
Thus, cosx/2 is negative and sinx/2 is positive.
Dividing numerator and denominator by sinx/2, we get
cosx2−sinx2cosx2+sinx2=cotx2−1cotx2+1
=cot(x2+π4)= R.H.S.
Ans: 2