wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If π<x<2π, prove that 1+cosx+1cosx1+cosx1cosx=cot(xb+π4)
.Find b

Open in App
Solution

L.H.S. =1+cosx+1cosx1+cosx1cosx=2cos2x2+2sin2x22cos2x22sin2x2
=2cosx2+2sinx22cosx22sinx2
=cosx2+sinx2cosx2sinx2
=cosx2+sinx2cosx2+sinx2 [π<x<2π,π2<x2<π]
Thus, cosx/2 is negative and sinx/2 is positive.
Dividing numerator and denominator by sinx/2, we get
cosx2sinx2cosx2+sinx2=cotx21cotx2+1
=cot(x2+π4)= R.H.S.
Ans: 2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon