If 1+cotθ=cosecθ, then the general value of θ is
nπ+π2
2nπ–π2
2nπ+π2
None of these
Explanation for correct option :
Step 1: Apply trigonometric relation
⇒1+cotθ=cosecθ
⇒1+cosθsinθ=1sinθ ∵cotθ=cosθsinθ
⇒sinθ+cosθsinθ=1sinθ
⇒sinθ+cosθ=1
Step 2:Squaring both sides
⇒(sinθ+cosθ)2=12
⇒sin2θ+cos2θ+2sinθcosθ=1 ; ∵sin2θ+cos2θ=1
⇒1+2sinθcosθ=1 ; ∵2sinθcosθ=sin2θ
∴sin2θ=0
⇒sin2θ=sin0=sinπ
∴θ=2nπ+π2
Hence Option (C) is correct.
If cotθ+cotπ4+θ=2, then the general value of θ is