If Pm stands for mPm, then 1+1P1+2P2+3P3+…+nPn is equal to:
1!
(n+3)!
(n+2)!
(n+1)!
Explanation for correct option:
Pm=Pm=mm!
p1=1!,p2=2!,p3=3!,…..........pn=n!
Now,
1+1P1+2P2+3P3+…+nPn
=1+(1)1!+(2)2!+(3)3!+........................…+(n)n!
=1+(2!–1!)+(3!–2!)+(4!–3!)+........................…+((n+1)!–n!)
=(1–1!)+(2!–2!)+(3!–3!)+(4!–4!)+…………………+(n!–n!)+(n+1)!
=(n+1)!
Hence, Option(4) is correct