The correct option is B e=√132
Given: (4,3√3) point lies on the standard hyperbola, eccentric angle =π3 radians
To Find: Eccentricity of the hyperbola
Step - 1: Find the values of a and b
Step - 2: Find the eccentricity of the hyperbola
Any point P(θ) on the hyperbola: (asecθ,btanθ)
∴4=asecπ3
⇒4=2a
⇒a=2
Also, 3√3=btanπ3
⇒3√3=b√3
⇒b=3
∴ Eccentricity of the hyperbola e=√1+b2a2
⇒e=√1+3222
⇒e=√1+94
⇒e=√132