If point C(¯¯c) divides the segment joining the point A(¯¯¯a) and B(¯¯b) internally in the ratio m:n, then prove that ¯¯c=m¯¯b+n¯¯¯am+n
Open in App
Solution
Let O be the origin. Then −−→AO=→a and −−→OB=→b Let P be a point on −−→AB such that −−→AP−−→PB=mn ⇒n(−−→AP)=m(−−→PB) ⇒n(−−→OP−−−→OA)=m(−−→OB−−−→OP) ⇒(m+n)OP=mOB+nOA ⇒(m+n)−−→OP=m→b+n→a ⇒−−→OP=→c=m→b+n→am+n