The correct option is C (0,1)
As point (k,k+2) lies in side the parabola x2=4(y+2)
So, k2−4(k+2+2)<0
k2−4k−16<0
(k−2)2−20<0
(k−(2+2√5))(k−(2−2√5))<0
k∈(2−2√5,2+2√5) …(1)
For parabola x2+(y−4)=0
k2+(k+2−4)<0
k2+k−2<0
(k+2)(k−1)<0
k∈(−2,1) ⋯(2)
for being in first quadrant both the co-ordinates (x & y) should be positive
k>0 ⋯(3)
k+2>0⇒k>−2 ⋯(4)
Now by (1)∩(2)∩(3)∩(4)
k∈(0,1)