If point Pn=(logan,1logan),n=1,2,3,4, where an>0,an≠1 lies on the circle whose centre is on y−axis, then the value of a1a2a3a4 is
Open in App
Solution
Let the circle whose centre is on y−axis be x2+(y−b)2=r2 ⇒x2+y2−2yb+b2−r2=0⋯(1) Given that Pn=(logan,1logan) lies on the circle Therefore, (logan)2+1(logan)2−2blogan+b2−r2=0⇒(logan)4+1−2blogan+(b2−r2)(logan)2=0 Whose roots are loga1,loga2,loga3,loga4 Assuming λ=logan ⇒λ4+(b2−r2)λ2−2bλ+1=0 So, the sum of the roots = 0 loga1+loga2+loga3+loga4=0 ⇒log(a1a2a3a4)=0∴a1a2a3a3=1