wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If point (x,y) is equidistant from the point (a+b b-a) and (a-b a+b). Prove that bx = ay

Open in App
Solution

Distace between the points (x, y) and (a+b, b-a) & (a-b, a+b) is equal
⇒ √{[x - (a + b)]2 + [y - (b -a)]2} = √{x - (a - b)]2 + [y - (a + b)]2}
Squaring both sides:
⇒ x2 + (a + b)2 - 2x(a + b) + y2 + (b - a)2 - 2y(b - a) = x2 + (a - b)2 - 2x(a - b) + y2 + (a + b)2 - 2y(a + b)
⇒ -2ax - 2bx - 2by + 2ay = - 2ax + 2bx - 2ay - 2by
⇒ ay - bx = bx - ay
⇒ 2ay = 2bx
⇒ bx = ay

flag
Suggest Corrections
thumbs-up
3
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Distance Formula
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon