If points z1=a+i,z2=1+ib and z0=0+i0 form an equilateral triangle where (a,b)∈(0,1), then
A
a=3−√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
a=2−√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
b=3−√5
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
b=2−√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Db=2−√3 ∵z0,z1,z2 are the vertices of an equilateral triangle, then z20+z21+z22=z0z1+z1z2+z2z0⇒z21+z22=z1z2⇒a2−1+2ai+1−b2+2bi=a+abi+i−b⇒(a2−b2)+i(2a+2b)=(a−b)+i(1+ab)
Comparing the real and imaginary part, we get a2−b2=a−b and 2a+2b=1+ab
Now, using a2−b2=a−b⇒(a−b)(a+b−1)=0⇒a=b or a+b=1
When a=b 2(a+b)=1+ab⇒4a=1+a2⇒a2−4a+1=0⇒a=4±√122⇒a=2−√3(∵a∈(0,1))⇒b=2−√3
When a+b=1 2(a+b)=1+ab⇒2=1+a(1−a)⇒a2−a+1=0D<0
No real solution
Hence, a=b=2−√3