If position of a particle is represented by a function sin2ωt, then the particle executes
Given y=sin2ωt=12−(12)cos 2ωt v=dydt=ωsin 2ωt a=dvdt=−2ω2cos 2ωt a=−4ω2y ⇒a∝−y
The particle executes SHM and it is periodic with time period
T=2π2ω=πω
Which of the following functions of time represent (a) simple harmonic, (b) periodic but not simple harmonic, and (c) non-periodic motion? Give period for each case of periodic motion (ω is any positive constant):
(a) sin ωt – cos ωt
(b) sin3 ωt
(c) 3 cos (π/4 – 2ωt)
(d) cos ωt + cos 3ωt + cos 5ωt
(e) exp (–ω2t2)
(f) 1 + ωt + ω2t2