If possible, using elementary row transformations, find the inverse of the following matrices.
⎡⎢⎣20−1510013⎤⎥⎦
For getting the inverse of the given matrix a by row elementary operations we may write the given matrix as
∴⎡⎢⎣20−1510013⎤⎥⎦=⎡⎢⎣100010001⎤⎥⎦A⇒⎡⎢⎣20−1311013⎤⎥⎦=⎡⎢⎣100−110001⎤⎥⎦A⇒⎡⎢⎣20−1112212⎤⎥⎦=⎡⎢⎣100−210101⎤⎥⎦A⇒⎡⎢
⎢⎣20−10152411⎤⎥
⎥⎦=⎡⎢
⎢⎣100−2210201⎤⎥
⎥⎦A⇒⎡⎢
⎢⎣20−10152013⎤⎥
⎥⎦=⎡⎢
⎢⎣100−5210001⎤⎥
⎥⎦A⇒⎡⎢
⎢⎣20−10152001⎤⎥
⎥⎦=⎡⎢
⎢
⎢⎣100−521052−11⎤⎥
⎥
⎥⎦A⇒⎡⎢
⎢
⎢⎣10−120152001⎤⎥
⎥
⎥⎦=⎡⎢
⎢
⎢⎣1200−52105−22⎤⎥
⎥
⎥⎦A⇒⎡⎢⎣100010001⎤⎥⎦=⎡⎢⎣3−11−156−55−22⎤⎥⎦A
Hence, ⎡⎢⎣3−11−156−55−22⎤⎥⎦ is the inverse of given matrix A.