If PQ is a double of the hyperbola x2a2−y2b2=1 such that OPQ is an equilateral triangle, O being the centre of the hyperbola, then the eccentricity ′e′ of the hyperbola satisfies.
A
1<e<2√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
e=2√3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
e=√32
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
e>2√3
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution
The correct option is Be>2√3 Let the hyperbola be x2a2−y2b2=1 and any double ordinate PQ be (asecθ,btanθ),(asecθ−btanθ) and O is centre (0,0). △OPQ being equilateral ⇒tan30∘=btanθasecθ ⇒3b2a2=cosec2θ ⇒3(e2−1)=cosec2θ Now, cosec2θ≥1 ⇒3(e2−1)≥1 ⇒e2≥4/3 ⇒e>2√3