If pqr=1, then (11+p+q−1+11+q+r−1+11+r+p−1) is equal to
If p>q>0andpr<−1<qr, then find the value of
If P(Q−r)x2+Q(r−P)x+r(P−Q)=0 has equal roots then 2Q=(where P,Q,r ϵ R)
pq2+q(p−1)−1=?(a) (pq+1)(q−1)(b) p(q+1)(p−1)(c) q(p−1)(q+1)(d) (pq−1)(q+1)