If ′x′ is real, the maximum value of 3x2+9x+173x2+9x+7 is -
f(x)=((3x2+9x+7)+103x2+9x+7)=1+(103x2+9x+7)nowf(x)willbemaximumwhen3x2+9x+7willbeminimumanditwillbe=(−D4a)=(−(92−4⋅3⋅7)4⋅3)=(−(81−84)4⋅3)=(14)∴valueoff(x)=1+(10(14))=1+40=41