Let (x2+2)=t
∴ t2+8x2=6xt
⇒ t2−6xt+8x2=0
⇒ t2−4xt−2xt+8x2=0
⇒ t(t−4x)−2x(t−4x)=0
⇒ (t−2x)(t−4x)=0
Substitute value of t
∴ (x2−2x+2)(x2−4x+2)=0
⇒ (x2−4x+2) has real roots as D>0
So, take x2−2x+2=0
⇒ x=−b±√b2−4ac2a
=−(−2)±√(−2)2−4(1)(2)2(1)
=2±√4−82
=2±√−42
=2±2i2
=1±i
∴ x=1±i can also be written as i±1
Now, i±1 comparing it with i±k
we get, k=1