Differentiate the above expression w.r.t. x
Given : yx=ey−x.....(1)
Let's prove dydx=(1+logy)2logy
Taking log both sides, We get,
logyx=logey−x
⇒xlogy=y−x..........(2)
Differentiating both sides w.r.t. x
We get,
ddx(xlogy)=ddx(y−x)
⇒log y+xy.dydx=dydx−1
[∵d(uv)dy=vdudy+udvdy]
⇒dydx=1+logy1−xy
Using (2) x=y1+log y
⇒dydx=(1+log y)1−yy(1+log y)
⇒dydx=(1+log y)2log y