wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If yx=eyx, prove that
dydx=(1+log y)2logy


Open in App
Solution

Differentiate the above expression w.r.t. x
Given : yx=eyx.....(1)
Let's prove dydx=(1+logy)2logy
Taking log both sides, We get,
logyx=logeyx
xlogy=yx..........(2)
Differentiating both sides w.r.t. x
We get,
ddx(xlogy)=ddx(yx)
log y+xy.dydx=dydx1
[d(uv)dy=vdudy+udvdy]
dydx=1+logy1xy
Using (2) x=y1+log y
dydx=(1+log y)1yy(1+log y)
dydx=(1+log y)2log y

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon