The correct option is
D 2(1+e21−e2)Refer to the figure.
Polar form of the equation of ellipse is given by,
lr=1+ecosθ
For segment SP, we can write,
lSP=1+ecosθ (1)
For segment SQ, we can write,
lSQ=1+ecos(π+θ)
∴lSQ=1−ecosθ (2)
Adding (1) and (2), we get,
lSP+lSQ=1+ecosθ+1−ecosθ
∴lSP+lSQ=2
Multiply both sides by SP, we get,
l+lSPSQ=2×SP (3)
Similarly, for chord PS′R, we can write,
∴l+lPS′S′R=2×PS′ (4)
Adding equations (3) and (4), we get,
l+lSPSQ+l+lPS′S′R=(2×SP)+(2×PS′)
∴2l+l(SPSQ+PS′S′R)=2(PS+PS′)
By the property of ellipse, PS+PS′=2a
∴2l+l(SPSQ+PS′S′R)=2(2a)
∴l(SPSQ+PS′S′R)=2(2a)−2l
∴l(SPSQ+PS′S′R)=2(2a−l)
∴(SPSQ+PS′S′R)=2(2al−1)
Now, l is y coordinate of end of latus rectum which is given by,
l=b2a
∴(SPSQ+PS′S′R)=2⎛⎜⎝2a(b2a)−1⎞⎟⎠
∴(SPSQ+PS′S′R)=2(2a2b2−1)
Now, b2a2=1−e2
∴b2=a2(1−e2)
∴(SPSQ+PS′S′R)=2(2a2a2(1−e2)−1)
∴(SPSQ+PS′S′R)=2(2(1−e2)−1)
∴(SPSQ+PS′S′R)=2(2−1+e2(1−e2))
∴(SPSQ+PS′S′R)=2(1+e21−e2)