If px2+qx+r=0 has no real roots for real values of p,q,r and 4p+2q+r>0, then
Given that 4p+2q+r>0 ...(1)
f(x)=px2+qx+r
Since, the equation f(x)=0 has no real roots.
Therefore, f(x1)f(x2)>0
f(0)f(2)=r(4p+2q+r)>0
Using (1), we get r>0
f(1)f(2)=(p+q+r)(4p+2q+r)>0
Using (1), we get p+q+r>0
Ans: A,B