If Q (0, 1) is equidistant from P (5, - 3) and R (x, 6), find the value of x.
x = 4
x = -4
Given P = (5, - 3), Q = (0, 1), R = (x, 6) and PQ = QR
∵ Distance between points (x1,y1) and(x2,y2) is √(x2−x1)2+(y2−y1)2.
∴PQ=√(5−0)2+(−3−1)2 and QR=√(0−x)2+(1−6)2
∵PQ = QR
⇒√(5−0)2+(−3−1)2=√(0−x)2+(1−6)2
⇒√(5)2+(−4)2=√(−x)2+(−5)2
⇒√25+16=√x2+25
⇒41=x2+25
⇒16=x2
⇒x=±4
Therefore, point R is (4, 6) or ( - 4, 6).