f(x)=sinaxsinbx
f(0)=ab.......(1) (Given)
limx→0+f(x)=limx→0+sinaxsinbx
=limh→0sina(0+h)sinb(0+h)=limh→0sinahsinbh
=limh→0⎛⎜
⎜
⎜⎝sinahah×ah×1sinbhbh×bh⎞⎟
⎟
⎟⎠=ab×limh→0(sinahah)×1limh→0(sinbhbh)
=ab×1×11
=ab.....(2)
again
limx→0−f(x)=limx→0−sinaxsinbx
=limh→0sina(0−h)sinb(0−h)=limh→0−sinah−sinbh
=limh→0sinahsinbh
=limh→0⎛⎜
⎜
⎜⎝sinahah×ah×1sinbhbh×bh⎞⎟
⎟
⎟⎠=ab×limh→0(sinahah)×1limh→0(sinbhbh)
=ab×1×11=ab.....(3)
From equation (1),(2),(3)
limx→0−f(x)==limx→0−f(x)==f(0)
∴ Function f(x) is continuous at x=0
Hence proved