wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Ifsecx+tanx=k,thenprovethatsinx=k21k2+1.

Open in App
Solution


We have secx+tanx=k...........1

From 2nd identity

sec2xtan2x=1

a2b2=(a+b)(ab)

(secx+tanx)(secxtanx)=1

(k)(secxtanx)=1 from eq 1

secxtanx=1k............2

adding equations 1 and 2, then we get

secx+tanx+secxtanx=1+1k

secx+secx=1+1k

2secx=k2+1k

secx=k2+12k

we know that secx=1cosx

cosx=1k2+12k

cosx=2kk2+1

we know that from 1st identity

sinx=(1cosx2)

sinx=(1(2k(k2+1)2)

sinx=(14k2)(k2+1)2

sinx=(k2+1)24k2k2+1

sinx=(k21)2(k2+1)2

sinx=k21k2+1
Hence proved

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon