If r > 0, -π ≤ θ ≤ π and (r, θ) satisfy r sinθ = 3 and r = 4(1 + sinθ) then the number of possible solutions of the pair ( r, θ) is
2
r = 4(1 + 3r) ⇒ (r - 6)(r + 2) = 0 ⇒ r = 6, r ≠ -2 as r > 0
∴ sin θ = 12 ⇒ θ = π6, 5π6
So (r, θ) = (6, π6), (6, 5π6)