If r1,r2,r3 are the radii of the escribed circles of a triangle ABC and if r is the radius of its incircle,then r1r2r3−r(r1r2+r2r3+r3r1) is equal to
A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
1
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
3
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A0 r1r2r3−r[r1r2+r2r3+r3r1] =△s−a△s−b△s−c−△s[△2(s−a)(s−b)+△2(s−b)(s−b)+△2(s−c)(s−a)] =△3(s−a)(s−b)(s−c)−△s△2[s−c+s−a+s−b](s−a)(s−b)(s−c) =△3(s−a)(s−b)(s−c)−△3s3s−(a+b+c)△2s =△3(s−a)(s−b)(s−c)−△3s(3s−2s)△2s △3△2s−△3s(3s−2s)△2s On simplifying,we get △s−△s=0