If R=(6√6+14)2n+1 and f=R-[R], where [.] denotes the greatest integer function, then Rf equals:
202n+1
R = [R] + f = (6√6+14)2n+1,0≤f<1
Let S=(6√6+14)2n+1 , 0 < S < 1
[R] + f - S = 2 { 2n+1C1(6√6)2n.14+
2n+1C3(6√6)2n−3.143+.... } = int eger.
[R] is int eger, so f - S is int eger.
0 ≤f<1,−1<−S<0
⇒ -1 < f < -S < 1 ⇒ f - S = 0
∴ Rf = RS = (6√6+14)2n+1(6√6−14)2n+1
= 202n+1