If R be a relation < from A={1,2,3,4} to B={1,3,5} i.e., (a,b) ∈ R ⇔ a<b, then RoR−1 is
{(3, 3), (3, 5), (5, 3), (5, 5)}
We have, R={(1,3);(1,5);(2,3);(2,5);(3,5);(4,5)}
R−1 = {(3,1);(5,1);(3,2);(5,2);(5,3);(5,4)}
Hence RoR−1 = {(3,3);(3,5);(5,3);(5,5)}