The correct option is
D n−22Step 1: Given:
R=cos2(n−1n)π+cos2(n−2n)π+cos2(n−3n)π+⋯+cos2(πn)
Step 2: To find:
The value of R.
Step 3: Assumption:
n∈N
Step 4: Concepts/Formulas used:
(1) cos2A=2cos2A−1
(2) 2cosAsinB=sin(A+B)−sin(A−B)
Step 5: Solution:
From given, we find out
R=cos2(n−1n)π+cos2(n−2n)π+cos2(n−3n)π+⋯+cos2(πn) ...(i)
Using formula (1) provide above in step 4, we get
R=12(1−cos2(n−1n)π+1−cos2(n−2n)π+1−cos2(n−3n)π+⋯+1−cos2(πn))
⇒R=12(n−1+[cos2(n−1n)π+cos2(n−2n)π+cos2(n−3n)π+⋯+cos2(πn)]) ...(ii)
Step 6:
Now wonder the term in square braces
S=cos2(n−1n)π+cos2(n−2n)π+cos2(n−3n)π+⋯+cos2(πn)
Multiply both sides by 2sinπn, we get
2Ssinπn=2sinπn(cos2(n−1n)π+cos2(n−2n)π+cos2(n−3n)π+⋯+cos2(πn)) ...(iii)
Step 7:
Using the formula(2) in the result of step 6, we get
2Ssinπn=n−1∑i=1(sin(2i+1n)π−sin(2i−1n)π) ....(iv)
Step 8:
Using the method of telescopic sum, we get
2Ssinπn=sin3πn−sinπn+sin5πn−sin3πn+..sin2n−1nπ−sin2n−3nπ
Solving it, we get,
2Ssinπn=sin2n−1nπ−sinπn
⇒2Ssinπn=−sinπn−sinπn
⇒2Ssinπn−2sinπn
⇒S=−1
Step 9:
Substituting the value of S in (ii), we get
R=12(n−1+(−1))
⇒R=n−22
Step 10: Result:
R=n−22
Hence, option D.