wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If R=cos2(n1n)π+cos2(n2n)π++cos2(2πn)+cos2(πn), then value of R is

A
n(n+1)2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
n2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n12
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
n22
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D n22
Step 1: Given:
R=cos2(n1n)π+cos2(n2n)π+cos2(n3n)π++cos2(πn)

Step 2: To find:
The value of R.

Step 3: Assumption:
nN

Step 4: Concepts/Formulas used:
(1) cos2A=2cos2A1
(2) 2cosAsinB=sin(A+B)sin(AB)

Step 5: Solution:
From given, we find out
R=cos2(n1n)π+cos2(n2n)π+cos2(n3n)π++cos2(πn) ...(i)
Using formula (1) provide above in step 4, we get
R=12(1cos2(n1n)π+1cos2(n2n)π+1cos2(n3n)π++1cos2(πn))

R=12(n1+[cos2(n1n)π+cos2(n2n)π+cos2(n3n)π++cos2(πn)]) ...(ii)

Step 6:
Now wonder the term in square braces
S=cos2(n1n)π+cos2(n2n)π+cos2(n3n)π++cos2(πn)
Multiply both sides by 2sinπn, we get
2Ssinπn=2sinπn(cos2(n1n)π+cos2(n2n)π+cos2(n3n)π++cos2(πn)) ...(iii)

Step 7:
Using the formula(2) in the result of step 6, we get
2Ssinπn=n1i=1(sin(2i+1n)πsin(2i1n)π) ....(iv)

Step 8:
Using the method of telescopic sum, we get
2Ssinπn=sin3πnsinπn+sin5πnsin3πn+..sin2n1nπsin2n3nπ

Solving it, we get,
2Ssinπn=sin2n1nπsinπn

2Ssinπn=sinπnsinπn

2Ssinπn2sinπn

S=1

Step 9:
Substituting the value of S in (ii), we get
R=12(n1+(1))
R=n22

Step 10: Result:
R=n22

Hence, option D.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon