Coefficient of correlation of x and y is r and
σ2x,σ2y and σ2x−y are varience of x,y and x−y
σ2x−y=1n[(x−y)−(¯¯¯x−¯¯¯y)]2
σ2x−y=1n[(x−y)−(¯¯¯x)+(¯¯¯y)]2
σ2x−y=1n[(x−¯¯¯x)−(y−¯¯¯y)]2
σ2x−y=1n[(x−¯¯¯x)2+(y−¯¯¯y)2−2(x−¯¯¯x)(y−¯¯¯y)]
σ2x−y=1n[(x−¯¯¯x)2]+1n[(y−¯¯¯y)2]−21n(x−¯¯¯x)(y−¯¯¯y)
σ2(x−y)=σ2x+σ2y−2rσxσy
2rσxσy=σ2x+σ2y−σ2(x−y)
∴r=σ2x+σ2y−σ2(x−y)2σxσy.