If r,s,t are the roots of the equation 8x3+1001x+2008=0 . the value of (r+s)3+(s+t)3+(t+r)3 is
We have,
f(x)=8x3+1001x+2008=0
f(x)=8x3+0x2+1001x+2008=0
Given the roots of this equation are r,s and t
It is a cubic equation,
Sumofroots=r+s+t=−(0)8=0......(1)
Alsoproductofroots=r×s×t=rst=−(2008)8=−251......(2)
Now,
(r+s)3+(s+t)3+(t+r)3=(−t)3+(−r)3+(−s)3=−(t3+r3+s3)
But we can get,
r3+s3+t3=(r+s+t)(r2+s2+t2−rs−st−tr)+3rst
⇒r3+s3+t3=0+3(−251)=−753
Now,
(r+s)3+(s+t)3+(t+r)3=753
Hence, this is the answer.